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* 1. Introduction

While semiconductor lasers of high level of sophistication and

reliability have been developed for present day fiberoptic telecom-

munications, demands for ultralow lasing threshold and ultrahigh

I modulation speed stem mainly from applications involving relatively

short distance interconnections within a computer. The need for optics

in computers arises from the increasing parallelism in modern computer

architectures, which places heavy demands on input/output functions

at gigahertz clock rates[l) ( ) . ) Further considerations of using

I semiconductor lasers in computer optical interconnects shows that

conventional semiconductor lasers are unacceptable for such purpo-

ses[2], the main problem being that they must be biased at or above

lasing threshold for proper modulation behavior. This mode of operation

requires a monitor photodiode and an active feedback circuit to stabilize

the operating point. In a supercomputer where there are as many as

a few hundred thousand interconnections, such feedback circuits willI '
occipy a large am-unt of real estate and the bias current required

will consume an unacceptable amount of power. It is therefore far
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Fig. 1 Schematic diagram of a scheme for optically interconnecting

high speed computers.
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preferable that the laser diodes used in computer interconnects be

driven directly by logic level signals without any need for biasing

and stabilization. However, it is well known that lasers modulated

in this manner suffer from three drawbacks : (1) a substantial delay

between the onset of lasing and the current pulse; (2) severe relaxation

oscIllation in the optical pulse; and (3) pattern effect as a result

of charge left-over from the previous pulse(s) (Fig. 2). Direct digital

switching of laser diodes without current prebias also allows fully

ON-OFF switching. An analysis of the switching dynamics of semiconductor

lasers showed that these problems can be solved by using a very low

threshold laser with threshold of less than imA.I
The concept of "optical interconnect" in supercomputers has matured

to the point where it is very important that devices with the above

* mentioned characteristics be available for actual implementation of

interconnect schemes. Recent work has resulted in ultra-low lasing

I threshold GaAs lasers using quantum well structures[3]. The basic

i physics of the limiting factors was clarified and this led to the first

demonstration of a sub-milliampere threshold laser, with the lowest

being 0.55mA[4]. The realization of the superlow threshold is in part

due to the use of single quantum well materials, and in part due to

I the use of an advanced laser structure, the buried heterostructure.

A version of the basic structure, the window buried heterostructure,

was developed[5] as a means to attain ultra-high modulation speeds of

beyond 10GHz. In a related front, there were studies on possible means

I
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I Fig. 2 Problems encountered when driving a laser diode without

i appropriate biasing.
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to increase the modulation bandwidth of lasers to 30GHz using quantum

well structures[6]. Theoretical predictions show that an appropriately

designed multi-quantum well laser shows a factor of 2-3 increase in

the modulation bandwidth over conventional lasers.I
Looking forward to the next generation of semiconductor opto-

electronic devices, one particularly exciting aproach is through band

* structure engineering which can lead to order-of-magnitude improvements

in the threshold of semiconductor lasers. It has been predicted that

by suitably modifying the semiconductor band structure, notably the

valence band effective mass, lasing thresholds as low as 10[iA can be

I obtained, which is a whole order of magnitude lower than the best laser

today. Past studies have shown that the basic limiting mechanism to

obtaining low lasing threshold is the transparency condition, which

* is the electron density required for the material to become optically

transparent. The transparency condition is attained when the quasi-

I Fermi level separation is equal to the bandgap. If the effective mass

of the hole is very large, which is the common case in GaAs, the density

of states is correspondingly large and the number of carriers required

to fill these states in order to bring the Fermi level to that required

for inversion is large. Thus it can be said that the present transparency

I condition, whether in conventional or in quantum well lasers, is

dominated by the hole effective mass, and if it can be lowered by

II
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artificial means to that near the electron effective mass, then

improvements in lasing threshold of an order of magnitude will result.

* These points will be illustrated in detail in a later section.

I A further consequence of lowering the effective mass of the holes

is that the differential optical gain - the increase in optical gain

per increase in the electron density - is also enhanced. This is not

an obvious result, but which will come out of the analysis that follows.

It also turns out that the direct modulation bandwidth of a semiconductor

laser is proportional to the square root of the differential gain, so

that lowering the effective mass of holes will result in a higher

modulation speed as well. This gain in modulation speed, however, is

not universal for devices of any construction, but only for those with

the appropriate device length and reflectivities. We will analyze these

issues in the following.

I Modification of the effective mass of holes can be accomplished

by changing the band structure of the crystal which is effected by a

strained layer quantum well structure. Ordinarily a material cannot

I be grown on a substrate unless their lattice constants match very

closely. However, a superlattice can be made out of two semiconductors

I with substantially different lattice constants as long as the individual

i layers of the constituents are sufficiently thin and the difference

between the lattice constants is such that the strain energy is smaller

than the misfit dislocation energy[7,8]. The strain between the layers

I
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under these conditions is accomodated coherently (without disloca-

tions). The first order effect of biaxial strain is a modification

of the bandgap. In general, compressive strain widens the bandgap and

tensile strain narrows the bandgap. Changes are more profound in the

I valence band due to the presence of heavy and light hole bands which

ordinarily are degenerate at zone center, as shown in Fig. 3. Under

biaxial compressive strain, new bands emerges which are admixtures of

the heavy and light hole bands, with the uppermost band having a lighter

mass in the direction parallel to the layer and a heavier mass per-

pendicular to it. Under biaxial tensile strain, the opposite is true.

The former is a more favorable situation for laser action. The desired

biaxial compressive strain can be found in InGaAs layers grown on GaAs

substrate, which can produce lasing action at wavelengths of around

I
2. optical gain in semiconductor lasersI

Before we analyze strained quantum well lasers it is useful to

review the basic gain mechanism in laser diodes in general. The state

* of a forward biased junction is given by the quasi-Fermi levels of the

electrons and holes, and the the electron and hole densities are given

I respectively by

I
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n fp r ( E ,) J, (E, E . ) d E c (1)

p E!) E,, E,,)dE, (2)

* where

fe(E, EfC) E 1

13"( exp(E,- Ef, )+ I (3)

are the Fermi distributions with Ec measuring positive into the con-

I duction band from the conduction band edge, and E. measuring positive

into the valence band from the valence band edge. The quantities

P,, are the density of state functions, which in a conventional (three

dimensional) material is proportional to the square root of the energy,

and assumes a staircase shape in an ideal quantum well. In general,

though, due to the interactions between different bands and the non-

parabolicity of the bands, the density of states functions assume forms

more complicated than the simple staircase model. The optical absorption

coefficient, with k-selection rule enforced, in the parabolic band

approximately, is

I (I.') ,pr( - - ,) ('.S)

I where

F = /I U - F, = t :F - (6)I
I
I
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is the reduced photon energy, is a material constant, and F. is the

effective bandgap of the quantum well material, which is the sum of

the bandgap of bulk GaAs, the lowest quantization energies of the

electrons and that of the holes. The quantity pr(E) is the reduced

3 density of states, which in the three dimensional case is given by

(( )23 ( I) 133/2 (Y a )

where the summation is over the numerous hole bands, and in the two

dimensional quantum well case, considering the energetically lowest

I quantized states only,I
P r (1+ b)

I The choice on whether to enforce the k-selection rule depends on the

material under consideration: for heavily doped compounds the transition

is dominated by bandtail states where k-selection rule does not apply;

on the other hand in lightly doped quantum well materials k-selection

I should apply, as experimental data seem to indicate. The gain coef-

ficient g(E) is simply the negative of the absorption coefficient.

For the material to experience gain at some photon energies, g(E)>O

for at least some E, which from Eq. (5) gives the following condition:

I+ - 1(8)

expI(F, - )/kll+ I expl(F, - Ff,)/k'I -1 I

which can then be further reduced to
/: fr + I..' f t' >  t(Q , )

I
I
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This is the well-known Bernard-Duraffourg condition for optical

transparency in a semiconductor. The electron density (and hence the

3 injection current) needed to attain this point can be found by finding

E, and E, subjected to the condition Eq. (9) and simultaneously the

I charge neutrality condition, n=p.

The electron density for transparency represents a fundamental

3 limit to achieving the lowest lasing threshold. The current needed for

lasing in general composed of two parts - the first part being the

* current needed for maintaining the electron density at the optical

transparency level, and beyond that a second part to attain the necessary

gain to overcome all the losses in the laser cavity. It can be argued

3 (and can actually be done experimentally) that a laser cavity can be

designed such that the losses are minimal, but this can only reduce

3 the second part of the threshold current while the first part, that

responsible for optical transparency, is unaffected. The key to building

an ultralow threshold laser is thus to design a laser cavity with a

3 very low loss, with a material that has the lowest transparency electron

density. A single quantum well structure is one that possesses both

3 of these qualities, and when combined with high reflectivity coating

to minimize mirror loss, results in the lowest threshold on record

3today[4].

I
It can be shown that the lowest transparency electron density will

3 result when the densitN of states functions of the electrons and holes

I
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are both small and identical. Unfortunately this is not the case in

most III-V materials, in which the effective mass of the hole (which

3is proportional to the power 2/3 of the hole density of states in 3-D
materials) is an order of magnitude larger than that of the electron

Ieffective mass. Consider the case when the electron and hole density
of states functions are identical in functional form and that the hole

density of states is D times that of the electron density of states,

3p,,(E)=Dp,(E). Then charge neutrality gives the following:
r ( 1 (0

f pdE exp(E-EfC)/kT+ I exp(E-E/,)/kT+ 0 (10)

If D=1, then from symmetry, at the point of optical transparency

I j=E1E,=O. If D>1, then the integral contribution of the second term

3in the parenthesis in Eq. (10) must be reduced by requiring E I<(' which

forces E ,>O, thus resulting in a higher electron density.

I
3. Optical gain and direct modulation speed of a laserU

While the optical gain inside a laser obviously has a direct

influence on the threshold of the laser, what is not so obvious is

3that the differential optical gain has a direct influence on the

modulation speed of the laser. To see this one starts with the basic

Idescription of laser dynamics which invloves a pair of rate equations
3governing the photon and carrier densities inside the laser medium[9]:

1
I
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dN_ J N
dt ed g( (11)

at - (N)P- N (12)
dt I vC

where N is the carrier density, P the photon density in a mode of the

laser cavity, J is the pump current, d the thickness of the active

region, T, is the spontaneous recombination lifetime of the carriers,

'up is the photon lifetime, g(N) is the optical gain as a function of

I the carrier density, P is the fraction of spontaneous emission entering

3 the lasing mode, and e is the electronic charge. The first rate equation

states that the rate of increase in carrier density is equal to the

rate of current injection, J/ed, less the rate of carrier loss due to

spontaneous recombination, (-N/T,), less the loss the carriers due to

I stimulated recombination, (-g(N)P). The second rate equation states

i that the rate of increase in photon density is equal to the rate of

photon generation by stimulated emission (g(N)P) less the loss of

photons due to cavity dissipation (-P/rp) plus the rate of spontaneous

emission into the photon mode 13N/t5 . Equations (11) and (12) are simply

I a bookkeeping of the supply, annihilation and creation of carriers and

photons inside the laser cavity and describe laser dynamics in a most

basic manner. More detailed explanations of laser modulation behaviors

can be obtained by addition and/or modification of the terms in Eq.

(11) and (12). The steady state solution of Eq. (11) and (12) gives

* the familiar light versus current characteristics of a laser diode.

To obtain information on the modulation dynamics of the laser, a small

[
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signal analysis is performed on Eq. (11) and (12), a procedure which

linearizes Eq. (11) and (12) about a steady state operating point.

Writing

N =No+ ne" '  (13a)

SP = P 0
+ pe 'IW (13b)

J=Jo+j(?  (13c)

we separate the variables into the steady state part and a small

sinusoidal part. Upon substitution into Eq. (12) and ignoring products

of small terms, we obtain

i n
i°n=d j s _ g'(N°)P~n-g(N°)P (14a)

ed tu

iwp=g'(No)Pon+[- (14b)

This represents a conjugate pole-pair (second order low-pass filter)

I type of response, and the resonance frequency is approximately given

Sg'(N) 0 (15)

The response drops off rapidly at 40dB/dec beyond the resonance fre-

quency. The modulation bandwidth is therefore usually taken as fr,

which from Eq. (15) is proportional to the square root of the differential

optical gain. Thus, when one considers the quantum well structure, one

not only has to consider the transparency density, but the slope of

the gain versus electron density relationship as well.

I
I

14

I



i
I

4. optical gain in a quantum well structure

A quantum well laser consists of a very thin active layer, 200A

or less, in which the motion of electrons in the direction perpendicular

i to the well are confined to less than a de Broglie length and the

allowable energies are quantized into distinct lcvels. The most

important consequence of this quantization is the modification of the

i density of states function into a staircase like characteristic (Fig.

4). As one starts to pump electrons into a quantum well, the electron

i density builds up to a point where the material becomes optically

transparent as in conventional bulk materials, and further increase

in electron density brings about optical gain. The optical gain is

considerably higher in a quantum well than in conventional bulk

materials, but since its small physical dimension results in a very

weak confinement of the optical mode, there is NO substantial overall

advantage in a single quantum well as far as optical gain is concerned.

i The problem associated with a small optical confinement in quantum

wells can be circumvented by using multiple quantum wells in the active

region of a laser. On the other hand, since the electron density for

i transparency in a quantum well is approximately the same as that in

bulk material (as we will show later), the small physical dimension

I of the former implies that a very tiny injection current is sufficient

to bring it to transparency. A combination of a small current for

II
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I Fig. 4 Step-like density of states function of a two-dimensional

quantum well (From Ref. 21).
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transparency and a higher optical gain enable multi-quantum well buried

heterostructure lasers to be built with threhsold current as low as

2.5mA[10].

A significant result of the above discussion is that while a single

quantum well laser does not have a very high optical gain, the

I transparency condition can be most easily reached compared to con-

ventional or multiquantum well lasers. Optical gain is required in a

laser for overcoming cavity (mirror and internal) losses, which can

* be readily reduced tenfold by increasing facet reflectivity to above

90% since the internal loss of a single quantum well laser is only

I about one-tenth of that of conventional double heterostructure. The

current required for transparency is a fundamental quantity since it

remains even when the cavity loss is reduced to zero. Thus the logical

* way to construct a laser with the lowest possible threshold is to use

a single quantum well structure in a low loss cavity - a buried

heterostructure (for efficient carrier confinement) single quantum

well laser, with high reflectivity coatings.

It was mentioned above that one of the underlying reason for a

low transparency density in quantum well lasers is that since the

transparency electron density is approximately the same as that in

bulk materials, the much thinner active region of a quantum well implies

I a much reduced transparency current. We will show here why the

* transparency electron density is nearly independent of well thickness,

I 17I
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and to what extent this holds true. Transparency occurs when the

separation in quasi-Fermi levels equals the minimum separation in

available valence and condution band states, the Bernard-Duraffourg

condition:

I EfC+ Eu =E +Eh, (16)

where Ef,.f, are the quasi-Fermi levels, measured from the band edges

and positive into the bands as before, and E f,.fare the first quantized

energies in the conduction and valence bands, respectively. The electron

and hole densities are given by

n,p= f pc.j,.jEE, Ef.,)dE (17)

I where f

are the Fermi distribution as given in Eqs. (3) and (4), and p,.,, are

the conduction and valence band density of states functions, which in

the simple constant effective mass, parabolic sub-band approximation

is given by

9c C ZH(E-Ec,) (18)

Tth L-

where H(x) is the Heaviside function, E, is the ith quantized energy

* given in the infinite well approximation by

i 2 n 2 - 2

Ec, 2m .2  (19)

3 and I., is the width of the quantum well. Substituting Eq. (18) into

(17) one obtains

I
I
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n- ZEC -E,,+kTln(l+exp((E, -E,,)/kT)) (20)

A set of corresponding formulae exists for holes with the only addition

that heavy and light holes are summed over in (18). The condition for

U charge neutrality equates n and p (for an undoped quantum well), and

provides a relation between Et, and EI,. This together with the

transparency condition Eq. (16) uniquely determines the Fermi levels

and hence the electron density at transparency. The computed trans-

parency electron sheet density is shown in Fig. 5. For comparison,

I thc rcsult for an infinite well is also shown. The transparency density

decreases linearly with well thickness until approximately 100A, and

from then on stays approximately constant between 100A and 50A, at the

if latter point the electrons are no longer confined in the quantum well.

Experimentally, a nearly constant threshold current dependence of a

3 very long laser devices (which approaches the transparency current)

on well width between 40 and OOA was observed[ll].

* While it appears that lowering the thickness of a single quantum

well to much below 100A will not aid in lowering the transparency

current, it has been proposed that further reduction can result from

reducing the effective mass of the heavy hole band[12,13]. This is to

be accomplished by strained layer structures, which is the topic of

* the next section.

I
I
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5. Strained layer quantum wells

It has been proposed that a strained layer superlattice be used

to reduce the effective mass of holes, thereby reducing the transparency

electron density and subsequently the lasing threshold. In conventional

bulk materials, the degeneracy of heavy and light hole bands at the

zone center means domination of the heavy hole band in hole occupation.

It was known that by applying strain to the bulk crystal, the degeneracy

can be broken such that under a biaxial compressive stress, the light

hole band is lifted above the heavy hole band in the k-vector directions

parallel to the applied strain (Fig. 3)[14]. Since the heavy hole is

five times heavier than the light hole, the resultant effective hole

mass can be reduced by a factor of 5. The strain can be built in by

growing lattice-mismatched InxGalxAs on a GaAs substrate. Such

lattice-mismatched epitaxial layers cannot be arbitrarily thick for

them to be defect free, the maximum thickness being only about 100A

for x=0.2. Thus all strained layer structures are by default quantum

well structures, and it appears that the same argument above, that of

lifting the light hole band above the heavy hole band by strain, can

* be applied to predict that strained quantum wells have an effective

hole mass five time lower than that of unstrained quantum wells. This

argument is largely incorrect, because in a regular quantum well, the

lowest hole quantum state corresponds to the band which is heavy in

the direction perpendicular to the well, and this same band happens

to be light in the plane of the well. Hence the effective mass of the

21
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lowest quantum state in a conventional quantum well is always that of

a light hole, even without strain. This can be seen very clearly in

band structure calculations of quantum wells; the valence subband

structure of a GaAs-Gao0 AIo0 As quantum well in the (100) orientation

3 is shown in Fig. 6 (15]. The question then becomes, what is the

advantage of applying strain in a quantum well, since the effective

hole mass is already so light? In fact, Shubnikov-de Haas measurements

* shows that the effective hole mass of a strained quantum well is reduced

only by 20% below that of an unstrained quantum well[16], which is a

3 minimal reduction in terms of influencing the threshold of a laser.

The answer comes from a detailed examination of the band diagram Fig.

6, where it is seen that that the highest hole band, the HHI subband,

3 which has a hole mass of 0.2, deviates from the parabolic characteristic

beyond approximately 10meV of the band edge, becoming substantially

3 heavier as energy increases. This is very undesirable for laser

operation, since under the heavy carrier concentration of >10"' in

I common laser operation the hole energies extends well beyond 10meV

3 into the band and effectively sees a very heavy mass. One can easily

convert the band structure into a density of states function, and the

3 ncn-parabolicity is reflected very clearly in Fig. 7[17], which shows

a very low density at the band edge but increasing rapidly beyond. The

I non-parabolicity comes from the interaction between the subbands, and

* an applied strain can separate the bands further thus reducing the

subband interaction, resulting in the parabolicity being maintained

3 even deep into the band. (In addition, the narrower bandgap InGaAs

I
22I
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Fig. 6 Detailed structure of the hole bands of a single quantum well

with various crystal orientations (From Ref. 15).
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The staircase function is the ideal single quantum well density of

states without taking into account the crystal orientation of the

quantum well and band-to-band interaction (From Ref. 17).
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i leads to a lower hole mass to start with). This is illustrated in Fig.

8[17], where an almost flat density of states is maintained until the

* second hole band is encountered.

i It is clear from the discussions in the above sections that a low

density of states results in a low transparancy electron density. What

is not so clear is how a low density of states results in a higher

differential gain - afterall, a low density of states means that at

any particular photon transition energy there are fewer states available

and hence the gain should be reduced. It will be shown that this is

true only at very high carrier densities, and if one designs a laser

which does not require a very high gain for lasing, the enhancement

in differential gain is substantial. Strained layer lasers should

therefore exhibit a higher modulation speed compared to a regular

quantum well laser, provided that the laser parameters are properly

designed.

i The optical gain is given by

J(I )= ,pr(/c+ /,-1) (21)

I where

I Al(22)

( o'~~I~ ph

is a material dependent parameter, I p,=/iu is the photon energy, and

are the Fermi factors

i
i
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exp[(E,.- EI,.f,)/kT]+ 1 (23)

As before, the energies are measured positive into the conduction band

from the (quantized) conduction band edge and positive into the valence

from the valence band edge. For a quantum well in the constant effective

mass approximation whose density of states are independent of energy,

the reduced density of states Pr is the harmonic mean of the electron

* and hole density of states:

1 1 1 2 (24)

-=-------=L z-h24

For transitions with k-selection rules enforced, the electron and hole

I energies are related by

EC .V= E -r P (25 )
,nc.u Pc. ,

* The quasi-Fermi levels are related to the electron and hole densities

by

I P fpc. (Ec.,)fco(E c.,.Ec., )dEc.u (26)

* which can be evaluated for a constant density of state (as in the case

of strainer' layer quantum for energies below 100meV, Fig. 8) to give

n,p= pC.,{Ec, f,+kTln( 1 +exp(-Efc. f/kT))} (27)

Let the hole density of states be D times that of the electron density

of states. Then, equating n and p under the charge neutrality condition

I yields the following relation between Ef, and Ef,:

I
I
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Fig. 8 Computed density of states of a strained quantum well with

2.6% biaxial strain (From Ref. 17).
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(ElclkT + ) = e + (28)

The gain spectrum of the strained quantum well is thus

( 1+ -E1 kT- + (29)

~(L)= * Pr (Ec- E c)/kr I1+ CE E 1.)/

I It can be easily seen that the maximum of this gain curve occurs at

3 E=0, i.e., E,=E,=0. Thus the maximum gain g, is given by

" = nPr( l -t1E kT + E kT) (30)

I which, using Eq. (28), can be converted to a relation that contains

3 only a single variable, the electron quasi Fermi level:( I 1I+ 1 (31)
gm.=Pr (e, /kE +1) l/D + 1 C /kE//) (

It has been shown that the carrier lifetime in a quantum well structure

I is almost inversely proportional to the carrier density n, with the

e xperimentally obtained dependence approximated by

r=(2.SxlO9s-cm-)/n (18], from which the injection carrier density

can be estimated for a given n. Using Eq. (27) and (31) one can plot

the maximum gain versus the injected current density, as shown in Fig.

I 9, for various values of D. It will be assumed throughout this calculation

that the electron mass is unchanged, while D is varied by varying the

hole mass. The current density where g, crosses zero is the transparency

level, and decreases with decreasing D as expected. The maximum

achievable gain is also reduced for small D, but this won't be felt

I
I
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Fig. 9 Computed mode gain versus current density for a single quantum

well with the electron density of states equal to that of a regular

single-quantum well, while the hole density of states is D times that

of the electron density of states.
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I until one reaches injection current densities of approximately 2.5kA/cM 2

or higher.U
As described previously, a very important parameter is the dif-

ferential gain, dgm/dn. A closed form solution can be obtained for

strained layer quantum well by using the approximation Eq. (27) and

(31):

dg . = dg . dE f (32)
dn dEf, dn

I where

dg . _ ePre ] + /D I 1
dEfc kT ((E/JCkr + 11), - (e lk+1)2) +3

and

dnp (1 1
d _kPT EfkT (33b)
def T e +1

so that

dgt l iD + Et/kT (34)
dn pC+p+ e(E fcT+1)34

Fig. 10 shows plots of dgm/dn as a function of g.I
The relaxation oscillation frequency of the laser is given by

I
I
I
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I kilg'(35)

Arf FICr' p-

where we denote dg/dn by g', n, is the refractive index and c is the

velocity of light. The photon lifetime is related to the peak gain

I by
1 _-gM (36)
" p ' Irg

and hence the relaxation oscillation frequency is given by

J I 2. rgmg'Po (37)

The important quantity is thus the product gmg'. Fig. 11 plots f,

I against g. for different values of D, at the same photon density P 0 .

i One striking feature of this plot is that the relaxation oscillation

frequency of a regular quantum well laser (D in the order of 10) is

I quite independent of gm, while that of a strained layer (D=2 or 1)

shows a clear maximum. Thus by fitting actual modulation data to

theory, one can actually obtain an estimation of the value D, the ratio

of the hole to electron density of states, and hence the amount of

strain in the quantum well. The plot also shows that the optimum value

I of D is actually around 2, at which point the relaxation oscillation

frequency can be enhanced by a factor of approximately 1.5 by applying

3 strain. Notice also that, in practical cases of strained InGaAs on

GaAs strain structures, the bandgap is lowered and hence the lasing

II
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wavelength is increased by up to 25% over GaAs, and therefore if one

were to compare the modulation speed at the same optical power, the

* enhancement is even higher.

i 6. Experimental results

As mentioned in previous sections, the original motivation of using

strained layer superlattices for lasers is its potential for order-

of-magnitude reduction in threshold current over conventional quantum

well lasers. Recent demonstrations of single quantum well lasers have

achieved impressive results, with the lowest threshold current density

to date at <10OA/cm 2 [19], and the lowest threshold current for a

"complete" device at 0.55mA[4]. These threshold currents are at such

a low level that factors originating from device imperfections, such

as junction leakage, existence of non-radiative recombination centers

and waveguide imperfections, come to play a dominant role in determining

I the threshold current. Any additional, fundamental reduction of the

* threshold current by strained layer effects may be overwhelmed by such

imperfections that they may not be realizable in practice. Thus by

I observing the threshold current alone, it is very difficult to verify

the fundamental advantages offered, in theory, by strained layer

U structures. Recent experimental results on strained layer lasers[20]

shows respectable threshold current densities, comparable to typical

ii
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3 quantum well lasers, but no better. There is thus no evidence that any

of the predicted advantages of strained layer laser structures is real

* or not.

* The analysis of previous sections on the modulation properties of

strained layer lasers shows substantial deviation from that of regular

quantum well lasers (which is substantially different from regular

double heterostructure lasers). In particular, when one plots the

relaxation oscillation frequency Jr versus the required gain for lasing,

i as in Fig. 11, one finds that for a single quantum well laer Jr is a

very weak function of threshold gain (which is related to the device

length and the mirror reflectivities), whereas for strained quantum

3 well lasers the functional dependence is considerably more drastic.

In fact, strained quantum well lasers offers an advantage in modulation

I bandwidth, but only at certain ranges of threshold gain. The origin

of this effect is the nature of the gain versus electron density

I characteristic. The relaxation oscillation frequency of the laser is

i only a function of the product g'(dg/dn) and hence measurement of J,

versus g provides a direct probe of the gain characteristic, regardless

3 of the existence of leakage currents or recombination centers which

would drastically affect the threshold current. (Note that recombination

i centers or leakage current effectively affects the carrier lifetime,

* which severely affects the threshold current but does not enter into

the expression for the relaxation oscillation frequency at all (5].)

l
i
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Fig. 11 Relaxation oscillation frequency versus peak gain for various

D's.
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We experimentally compared the relaxation oscillation frequency of

I strained layer single quantum well lasers and regular single quantum

well lasers. The regular single quantum well lasers were of a standard

type with a graded-index clading layer which were used for earlier

3 experiments in low threshold current studies[4). The strained layer

single quantum well laser has a profile shown in Fig. 12, and was grown

I by molecular beam epitaxy at a substrate temperature of 6000 C. With

an indium concentration of approximately 20% in the active layer,

layers with good surface morphology can be grown at a thickness up to

E 150A. Stripe geometry lasers were fabricated with a stripe width of

7[Lrn, and typical threshold current densities were around lkA/cm2 .

3 These values are considerably higher than typical single quantum well

lasers.

3 The relaxation oscillation frequency of the lasers were observed on

a standard microwave measurement setup[9). Devices of various lengths

3 were used, and the data pointz arc zucrr;z:c on the theoretical

plots of Fig. 11 for both single quantum well lasers and strained layer

single quantum well lasers, operated at an identical optical power

I density per width of 3mW/pm. A striking feature one observes is that

the relaxation oscillation frequency of standard single quantum well

I lasers is relatively independent of gain, while that for strained layer

quantum well shows an obvious peak at an optical gain of around 60cm -1 .

I This observation is consistent with the theoretical expectations based

on a reduced hole mass for the strained layer structure. In fact, for
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the present results, the observed peak of the relaxation oscillation

versus gain characteristic matches that of the computed result for

D=2. The overall observed relaxation frequency is lower than that

predicted theoretically, this may be due to the uncertainty in estimating

I the optical power density at which the lasers are operating.

I One last point that should be mentioned is that the present analysis

considers optical transitions involving only the lowest quantized

E state. At high optical gains such as those above - depending on the

3 transversal structure - 70 cm -1 , there is a possibility that the second

quantized state transition is involved [21]. When this happens, one

would expect in theory that the relaxation oscillation frequency

experiences a sharp increase due to the higher differential gain of

I the second quantized state lasing at the transition. Fig. 13 shows

i the theoretically expected behavior of a regular 100 A single quantum

well lasers calculated by using the parabolic band approximation from

I a large number of subbands and smearing of the density of states

function [21,22]. The experimental data do not indicate any significant

3 increase of the relaxation oscillation frequency with increasing gain

up to 110 cm-1 . This could be due to a quantum well thickness

substantially different than 100 A or less than perfect material

E quality. Even so the experimental findings reported in ref. 22 provide

evidence that the model closely describes experimental conditions,

E taking proper account of the interband mixing that could produce a

E density of states function quite different from the simple smeared out
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step function used in the model. In fact, one observes from Fig. 7

that when such interband mixing is taken into account, the density of

states function of a regular quantum well is higher than that of the

simple staircase, thus resulting in a higher available gain from the

i lowest quantized state than that predicted from the simple staircase

model. To resolve these issues further investigations will be necessary.I
7. ConclusionI

i It is shown that the unique properties of strained quantum well lasers

can be identified by measuring the relaxation oscillation frequency

of the lasers as a function of optical gain. These measurements exclude

effects due to non-radiative recombinations and leakage currents, which

I can mask the beneficial effects in terms of a lower threshold current

due to a reduced hole mass in strained quantum wells. The conclusion,

both theoretically and experimentally, is that strained quantum well

lasers have a higher differential gain, but which saturates at a lower

gain level, as compared to regular quantum well lasers. The higher

3 differential gain results in a higher relaxation oscillation frequency

and hence a higher modulation speed. The saturation behavior is not

necessarily a disadvantage, since such charactersitics are needed for

3 ultra-high speed mode-locking of semiconductor lasers[23], as well as

other novel device application ultilizing the non-linear effects of

I the optical gain. The results in this report are obviously only

preliminary, and further studies in this area promise to create not
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only lower threshold lasers as predicted previously, but also leads

to novel optoelectronic device applications using the highly non-linear

optical gain characteristics of strained layer quantum wells and
I superlattices.
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